快捷搜索:

您的位置:环球彩票登陆 > 环球彩票登录网址 > 南京大学卢山教授在植物代谢调控研究取得重要

南京大学卢山教授在植物代谢调控研究取得重要

发布时间:2019-11-21 03:44编辑:环球彩票登录网址浏览(73)

    图 2. 水稻GGPPS可以形成同源二聚体或与GRP形成异源二聚体。

    中国科学院遗传与发育生物学研究所刘翠敏研究组经过对衣藻不同类型的Cpn60顶端区进行筛选和比较发现:该区不仅显著影响分子伴侣素的ATP酶活,而且α型顶端区对RbcL的结合能力是β型的三倍,但却只有β型顶端区能够与辅伴侣进行有效互作。通过解析 CPN60α 和 CPN60β1 两种类型的顶端区晶体结构(分辨率分别为 1.75 Å 和 1.5 Å),结合大量同源序列分析,锁定第 203,235 和 241 三个氨基酸位点。进一步研究证明了它们在亚基功能分化中的关键作用。同时以异源寡聚体CPN60αβ1β2为模型进行试验,揭示了Cpn60不同亚基顶端区的协作分工雏形。以上研究成果首次凸显CPN60α顶端区所具有的独特优势,对分子层面认识并优化叶绿体蛋白内稳态,进而改良光合作用效率具有重要的参考价值。

    该工作由王玉锋、张建辉和史晓亮等完成,并得到多项国家自然基金委项目的资助。

    (生命科学学院 科学技术处)

    图片 1

    滕胜研究组通过筛选水稻钴60射线突变体库,获得多个水稻叶色突变体,其中tcd5突变体表现为在低温条件下(20℃)叶片白化、高温条件下(32℃)叶色恢复正常的表型。这表明在低温条件下有特定的因素调控叶绿体的发育。研究发现,在20℃下,tcd5中叶绿体和质体发育受损,类囊体膜在mid-p4阶段停滞。通过图位克隆和之后的互补和敲除实验,研究人员发现loc_os05g34040基因控制tcd5表型。该基因编码保守的质体定位的单加氧酶家族蛋白,该蛋白一直没有被报道与温度敏感植物白化表型相关。一些参与质体转录/翻译及光合作用的基因在tcd5突变体中发生了很大的变化。虽然tcd5同源基因在拟南芥中的突变体未体现出温度依赖的表型,OsTCD5仍可以互补拟南芥突变体的表型。这表明在双子叶和单子叶植物之间tcd5功能是保守的。

    图片 2

    上世纪八十年代,John.Ellis等发现光合作用固碳关键酶Rubisco的折叠组装依赖于叶绿体分子伴侣素Cpn60。随后的研究表明,Rubisco的大亚基RbcL必须先与Cpn60结合才能组装成有功能的全酶复合体。Rubisco是自然界最丰富的蛋白质,而Cpn60作为叶绿体定位的重要分子伴侣,还参与其它蛋白的折叠。因此,Cpn60对不同底物的结合或折叠处于动态平衡中。Cpn60的顶端区位于桶状结构的顶部,负责对蛋白底物和辅伴侣的识别和互作。Cpn60如何实现不同底物间的结合-折叠平衡是个由来已久的科学问题。

    8月16日,《实验植物学杂志》(Journal of Experimental Botany)在线发表了中国科学院上海生命科学研究院植物生理生态研究所滕胜研究组题为Temperature-sensitive albino gene TCD5, encoding a monooxygenase, affects chloroplast development at low temperatures 的研究论文。该研究发现了一个影响水稻低温叶绿体发育的关键基因TCD5,该类单加氧酶家族参与温度敏感的植物白化表型是首次报道。

    6月12日,美国科学院院报在线发表了我校生命科学学院卢山教授实验室题为A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in ric的研究论文(

    该论文于5月12日在Molecular Plant 在线发表(DOI: 10.1016/j.molp.2016.04.019),此研究得到了植物细胞与染色体工程国家重点实验室和国家自然科学基金的资助。刘翠敏研究组博士研究生张世佳为该论文第一作者。

    生物界中,植物的光合作用产物是食物的最终来源。叶片是植物进行光合作用的主要器官,而叶绿体是高等植物光合作用的主要场所。叶色突变体是一类与植物光合作用直接相关的突变体。通过对这类突变体的研究,将有助于阐明植物光合调控机制、叶绿体发育的分子机理,利用基因工程提高作物的光合能力以及增加作物产量。

    光合作用是地球上最重要的化学反应,叶绿素是光合作用的关键分子。这项研究发现了水稻叶绿体中的一个新的蛋白GRP,它犹如一个向导,将叶绿素合成的关键酶带到叶绿体中的特殊结构--类囊体--中,从而源源不断地将底物转化为叶绿素,保证这个重要的反应不受其它代谢过程的干扰。细胞代谢是一个复杂的网络,有许多分支,轻重缓急各不相同,但光合作用是叶绿体的主业。GRP蛋白的发现很好地解释了植物对叶绿素合成的保障机制。水稻是重要的粮食作物,本研究对农作物生产也具有重要意义。植物生理学家、中国科学院院士陈晓亚研究员接受采访时说。

    图:衣藻叶绿体Cpn60亚基顶端区分化和协作

    叶绿素是最重要的有机化合物。关于叶绿素的合成研究多集中在其卟啉环的代谢过程,而对其植烯侧链的供应了解很少。植烯来自于叶绿体中的GGPP,但是GGPP同时也是植物三种激素(赤霉素、脱落酸、独脚金内酯)以及类胡萝卜素等重要生理物质的合成前体。这些合成过程分布于叶绿体的基质和类囊体等不同区室中。植物如何精确调配GGPP供应,以同时满足不同物质的合成,始终令人困惑,也是很多代谢调控工作无法绕过的问题。

    卢山教授实验室由孙文竹同学(2006-2010)在本科论文工作中发现,在拟南芥和水稻中对GGPP的竞争存在主次之分。随后由周飞同学(2006-2016)通过对GGPPS的研究发现,其可以在叶绿体基质中形成同源二聚体,而在类囊体中与GRP蛋白组成异源二聚体。酶活分析、晶体结构解析和点突变研究的结果证明异源二聚体结合能力更强,且酶促活性更高、反应更专一。根据对突变体植株的研究表明,水稻利用GRP调控GGPPS在同源和异源二聚体之间的分配,并以此调配GGPPS在叶绿体基质和类囊体上的分布和酶活。该研究还进一步证实,叶绿素的生物合成有赖于在类囊体上由GGPPS/GRP异源二聚体所产生的GGPP。

    图片 3

    该工作得到国家重点基础研究发展计划的支持,研究人员来自南京大学、南京农业大学、上海交通大学、中科院上海植物生理生态研究所的四个国家重点实验室以及美国普渡大学。南京大学生命科学学院周飞同学和卢山教授分别为本文的第一作者和通讯作者。

    图 1. 植物叶绿体中GGPP为不同下游代谢途径提供底物。

    A. GGPPS/GRP异源二聚体结构及界面氨基酸组成。B. GGPPS/GGPPS同源二聚体结构及界面氨基酸组成。C. GGPPS的H145及D177以及GRP中对应的H126*和D158*是形成二聚体所必须的。D. GRP中R68*比GGPPS中对应的A93更有利于二聚体的结合。E. GRP中F132*、F161*、F204*比GGPPS中对应的M151、L180、V227更有利于二聚体的结合。

    本文由环球彩票登陆发布于环球彩票登录网址,转载请注明出处:南京大学卢山教授在植物代谢调控研究取得重要

    关键词: 环球彩票登陆 教授 南京大学 进展 伴侣